Categories
BLOG

cellulose joint

Cellulose joint

a Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai, China
E-mail: [email protected]
Fax: +86-21-65641740

Abstract

Cellulose without any pretreatment was directly converted into levulinic acid (LA) in a microwave-assisted acidic catalytic system with a high ionic strength. The highest LA yield could reach 67.3 mol% within 60 min even when the cellulose concentration was as high as 10 wt%. It is concluded that high ion strength and microwave irradiation were jointly responsible for the fast cellulose conversion and high LA yield, and a cooperative acceleration mechanism is finally proposed. The high ion concentration provided by alkali metal halides not only accelerated the cellulose hydrolysis but also facilitated glucose conversion into LA by shifting the weak acid ionization equilibria, and microwave irradiation further promoted this salt effect by its characteristic heating way of ion conduction. Such a one-pot catalytic system provides a possibility of practical application for direct highly efficient conversion of cellulose due to its green properties, low cost and efficient characteristics.

Article information

Direct production of levulinic acid in high yield from cellulose: joint effect of high ion strength and microwave field

If you are not the author of this article and you wish to reproduce material from it in a third party non-RSC publication you must formally request permission using Copyright Clearance Center. Go to our Instructions for using Copyright Clearance Center page for details.

Authors contributing to RSC publications (journal articles, books or book chapters) do not need to formally request permission to reproduce material contained in this article provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    Reproduced from Ref. XX with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry.
  • For reproduction of material from PCCP:
    Reproduced from Ref. XX with permission from the PCCP Owner Societies.
  • For reproduction of material from PPS:
    Reproduced from Ref. XX with permission from the European Society for Photobiology, the European Photochemistry Association, and The Royal Society of Chemistry.
  • For reproduction of material from all other RSC journals and books:
    Reproduced from Ref. XX with permission from The Royal Society of Chemistry.

If the material has been adapted instead of reproduced from the original RSC publication “Reproduced from” can be substituted with “Adapted from”.

In all cases the Ref. XX is the XXth reference in the list of references.

If you are the author of this article you do not need to formally request permission to reproduce figures, diagrams etc. contained in this article in third party publications or in a thesis or dissertation provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] – Reproduced by permission of The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC
  • For reproduction of material from PCCP:
    [Original citation] – Reproduced by permission of the PCCP Owner Societies
  • For reproduction of material from PPS:
    [Original citation] – Reproduced by permission of The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC
  • For reproduction of material from all other RSC journals:
    [Original citation] – Reproduced by permission of The Royal Society of Chemistry

If you are the author of this article you still need to obtain permission to reproduce the whole article in a third party publication with the exception of reproduction of the whole article in a thesis or dissertation.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Cellulose without any pretreatment was directly converted into levulinic acid (LA) in a microwave-assisted acidic catalytic system with a high ionic strength. The highest LA yield could reach 67.3 mol% within 60 min even when the cellulose concentration was as high as 10 wt%. It is concluded that high ion strength